THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2060B Mathematical Analysis II (Spring 2017)

Tutorial 1

Tongou Yang

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$.
(a) State the definition of differentiability of f at c.
(b) Recall we have the theorem:

Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. Then f is differentiable at c if and only if there exists a function $g:[a, b] \rightarrow \mathbb{R}$ which is continuous at c such that

$$
f(x)-f(c)=g(x)(x-c)
$$

where $g(c)=f^{\prime}(c)$.
Using the theorem above, show the following theorem:
Theorem 2. (Chain Rule) Let $f:[a, b] \rightarrow[d, e], g:[d, e] \rightarrow \mathbb{R}, c \in(a, b)$, $f(x) \in(d, e)$. Suppose f is differentiable at c and g is differentiable at $f(c)$. Show that the composite function $g \circ f$ is differentiable at c, and that

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c) .
$$

(c) What is the problem with the following "proof"?

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{x-c} \\
& =\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{f(x)-f(c)} \cdot \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{f(x)-f(c)} \cdot \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{y \rightarrow f(c)} \frac{g(y)-g(f(c))}{y-f(c)} \cdot \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}, \text { since } f \text { is continuous at } c . \\
& =g^{\prime}(f(c)) \cdot f^{\prime}(c)
\end{aligned}
$$

2. (a) State the Mean value theorem.
(b) Show that if $f:(a, b) \rightarrow \mathbb{R}$ has strictly positive derivative at $c \in(a, b)$, then there exists $\delta>0$ such that for any $c-\delta<x<c<y<c+\delta$, we have $f(x)<f(c)<f(y)$.
(c) With the same condition, could we get a stronger result that there exists $\delta>0$ such that for any $c-\delta<x<y<c+\delta$, we have $f(x)<f(y)$? (Hint: Consider the function)

$$
f(x):=\left\{\begin{array}{l}
x+2 x^{2} \sin \left(\frac{1}{x}\right), x \neq 0 \\
0, x=0
\end{array}\right.
$$

(d) Let $D \subseteq \mathbb{R}$ be a domain. Using mean value theorem, prove that any function $f: D \rightarrow \mathbb{R}$ which is differentiable on D with bounded derivative is uniformly continuous. Hence show that if $f:[a, b]$ has a continuous derivative on $[a, b]$, then f is uniformly continuous and bounded. (One should define left and right derivatives here)
3. We consider some explicit examples.
(a) Consider $f(x):=\sqrt{x}$ defined on $[0, \infty)$. Show that f is differentiable on $(0, \infty)$ but not at 0 .
(b) Consider $f(x):=x \sin \left(\frac{1}{x}\right)$ defined on $x \neq 0$ and $f(0):=0$. Show that f is not differentiable at 0 .
(c) Consider $f(x):=x^{2} \sin \left(\frac{1}{x}\right)$ defined on $x \neq 0$ and $f(0):=0$. Show that f is differentiable everywhere on \mathbb{R} but $f^{\prime}(x)$ is not continuous.
(d) Consider $f(x):=\frac{1}{1+x^{2}}$ defined on \mathbb{R}. Compute its derivative $f^{\prime}(x)$, and hence show that f is uniformly continuous.

4. Solution:

The function below satisfies $f^{\prime}(0)=1>0$ but f is not increasing on any neighbourhood of 0 .

$$
f(x):=\left\{\begin{array}{l}
x+2 x^{2} \sin \left(\frac{1}{x}\right), x \neq 0 \\
0, x=0
\end{array}\right.
$$

Proof. Let $\delta>0$ be arbitrary. Consider two points $x:=\frac{1}{2 n \pi+\frac{\pi}{2}}, y:=\frac{1}{2 n \pi-\frac{\pi}{2}}$ where n is large enough so that $0<x<y<\delta$.
Then we compute $f(x)-f(y)=x+2 x^{2}-y+2 y^{2}$. Using $\frac{1}{x}-\frac{1}{y}=\pi$, we can show that $f(x)-f(y)>0$. Hence f is not increasing on any neighbourhood of 0 .

